新兴铸管股份有限公司
Xinxing Ductile Iron Pipes Co.
国家材料腐蚀与防护科学数据中心分中心-智慧铸管-耐蚀钢铁材料数据中心
National Materials Corrosion and Protection Data Center
Intelligent Ductile Iron Pipe-Corrosion Resistant Steels Data Center
中文 | Eng 管理后台 数据审核 登录 反馈
全面解析海洋平台用超级不锈钢和耐蚀合金
2016-04-20 15:25:10 作者:本网整理 来源:国家材料腐蚀与防护科学数据中心

  与陆地油气开采相比,海洋环境洋流剧烈、海温和压力随深度变化大、海底岩层结构与陆地井迥异。海洋油气中H2S、CO2和Cl-等的含量普遍较高,海底微生物种类复杂,化学腐蚀和微生物腐蚀能力都很强。因此,海洋油气开采平台用特殊钢材料如不锈钢、耐蚀合金等普遍要求高耐蚀、高强高韧和高耐磨等性能特点。国外先进的海洋油气资源钻采、加工、输运等环节均应用了大量的超级不锈钢和耐蚀合金材料。所谓的“超级”不锈钢材料,与传统不锈钢材料相比,一般是指高Ni/Cr/Mo、高纯净度、采用N 金化或变形工艺强韧化的一类高性能不锈钢材料,如超级奥氏体、超级铁素体、超级双相不锈钢以及镍基或铁镍基耐蚀合金等。


  本文通过对国外海洋平台用先进高强度、高耐蚀性不锈钢及耐蚀合金材料发展和应用现状的系统调研,阐述了其商业化产品的分类及关键性能指标、应用领域、代表性企业及产业规模,其中先进特殊钢代表性商业牌号和平台典型件应用部位是重点讨论的内容。另一方面,对目前国内该领域的材料研发、应用现状以及存在的问题进行了剖析,揭示了国内外生产及市场环节存在的巨大差异。在此基础上,对我国未来海洋平台用先进特殊钢材料的发展提出了合理建议,对相关材料研发和生产发展方向、产业发展模式等都具有参考意义。


 
国外海洋平台用先进特殊钢:


  材料分类及关键性能指标


  与海洋平台用微合金化结构钢材料不同,海洋平台用特殊钢材料普遍都是高合金体系的Ni-Cr 或Cr-Ni-Mo 基不锈钢、超级不锈钢或耐蚀合金材料,一般都具有高点蚀当量、高纯净度以及N 合金化等特点。使用这些高合金材料制备的海洋平台典型件如储运、工艺管道、脱盐、换热器、油井管、钻探和桩腿等,为满足其特殊的服役工况条件,普遍具备高强度、高耐蚀性或兼而有之。通常而言,耐蚀性和强度是海洋平台用特殊钢材料的两个关键性能指标。目前国外海洋平台用先进特殊钢钢种主要包括超级奥氏体不锈钢、超级铁素体不锈钢、高强度奥氏体无磁不锈钢、镍基和铁镍基耐蚀合金等,这几类特殊钢材料因其合金成分体系设计不同而性能各有所长。


  (1) Mo 端:Mo 端的典型代表为高Mo 含量的Cr-Ni-Mo超级奥氏体不锈钢。对于超级奥氏体不锈钢而言,普遍具有较高的Cr、Ni 含量、一定的Mo 含量(6%~7%),具有在较高温度优异的耐局部腐蚀和均匀腐蚀的能力,其点蚀当量PREN 值(Cr+3.3Mo+16N)一般都达到30以上,部分材料甚至高达50以上,这确保了此类材料优异的耐蚀性能;同时合理的N合金化使其兼具了较高的强度和塑韧性。


  (2) Ni 端:Ni 端的典型代表为镍基或铁镍基耐蚀合金。对于镍基或铁镍基耐蚀合金来说,其Cr、Ni、Mo 合金含量更高,在热带水域和离子介质复杂的条件下比超级奥氏体不锈钢具有更为突出的耐局部腐蚀、应力腐蚀性能。可广泛应用于油气媒介、油水分离或其他更为苛刻的化工工艺管道、泵阀和离心机等工矿条件。


  (3) N端:对于高氮奥氏体不锈钢来说,极高的N合金含量大幅度提升了材料的强度指标,使其具有室高温条件下显著优异的强度性能,由于采用了Mn-N代Ni成为奥氏体稳定元素,使其在性能优异的同时具有较低的生产成本。由于近年来其合金体系的不断优化,以及一定的Mo元素加入,使其也具备了优良的耐局部腐蚀性,Cr 含量的不断提升以及C元素的进一步降低,改善了材料的耐晶间腐蚀性能。


  高性能的海洋平台用特殊钢材料在国外早已商业化生产多年,典型的生产厂商包括瑞典山特维克(Sandvik)、德国蒂森克虏伯(ThyssenKrupp)、芬兰奥托昆普(Outokumpu)、日本冶金(Yakin)、美国阿里根尼(ATIAllegheny)、美国特种金属(SMC)、奥地利伯乐(Bohler)、美国卡朋特(Carpenter)等,其中代表性的海洋油气资源开发工程用高性能Cr-Ni-Mo-N 体系超级奥氏体不锈钢和耐蚀合金材料。


  国内海洋平台用特殊钢材料发展现状:


  生产和应用现状:


  据中海油海洋油气项目组(深圳)、采购部门的内部资料显示:国内海洋油气田项目的上述特殊钢部件和装备均直接从Bohler、Alfa-Laval、Butting、Cameron、IntecSEA、CladTek、Flowserve、Goulds、Heatric 等国外厂商采购。据中海油开发工程设计公司的统计数据显示:目前海洋平台工艺设备中进口份额约占总造价的3%~5%;工艺管道和储运管道约占总造价的15%~30%;因此单一平台项目中进口份额目前要占到平台总造价的30%~40%。这意味着仅COSL中海油服2013年下半年上马的3个海洋油气平台项目,由于进口高性能特殊钢关键部件而产生的费用就高达3~4亿美元,约合人民币20~25亿元。


  由于我国海工用特殊钢材料生产起步较晚、研制生产停滞不前,导致海工用特殊钢及关键装备绝大部分依赖进口,更不用提占据国际市场份额。以我国目前唯一一个自主开发的深海油气田项目荔湾油田为例,平均水深仅为1500m,由于许多关键技术的欠缺,该项目3-1油气田为我国与加拿大赫斯基能源合作开发,大部分关键装备和部件如离心机、海底复合管道、泵阀等均从国外进口,租国外技术装备采自己的海油气,成为当前我国深海油气资源开发的真实写照。


  国内本领域新材料产业发展问题:


  我国目前海工用特殊钢领域工业化生产及下游平台用海工装备部件的制造均已有一定程度的开展。部分典型部件如钻具、管道、换热器、泵阀等已在陆海油气田以及石化工业中得到初步应用。但就材料制备、装备制造等领域的具体工艺现状来说,国内相关行业、企业、应用等均存在较为典型的问题。


  本领域新材料研发方向及发展模式:


  高强度无磁不锈钢、超级奥氏体不锈钢和耐蚀合金是未来我国海工用特钢国产化需重点攻关的三大类钢种,应用覆盖海洋油气的钻采储输等环节。在目前研制和生产现状的基础上,各钢种均具有自身独特的发展趋势:


  (1) 高强度无磁不锈钢的发展趋势是高强度、高耐蚀、无磁性和低成本。通过足够的N 含量确保以上性能指标。国内目前已有部分企业生产此类产品,但其合金体系设计落后,强度、晶间腐蚀性能、热变形加工工艺与国外相比差距很大。如何提高该类产品性能、优化合金体系是此类材料的研发重点。


  (2) 超级奥氏体不锈钢的发展趋势是高强度和高耐蚀性,通过高Cr、Ni、Mo含量确保足够的耐蚀性能,通过适量的N含量确保兼具优异的力学性能,通过合理的热变形工艺确保无开裂、高成材率。合金体系的创新和理论设计是此类材料的研发重点。


  (3) 耐蚀合金的发展趋势是极高的耐蚀性和良好的加工工艺性能,通过极高的Cr、Ni、Mo 含量保证优异的耐局部和全面腐蚀性能,重点解决管材、板材的冶炼、热挤压、热轧等制备技术,解决此类材料从无到有、有价无货的问题。


  我国海洋工程用特殊钢产业发展的模式也应当逐步走上良性轨道。海洋油气平台项目应当积极大胆地提出对主要关键部件最新、最前沿的需求、性能指标,通过设计部门和材料研发单位的通力配合,逐步实现材料和装备国产化、规模化和工程化,使我国海工用特殊钢走上良性发展的模式。国家层面也应由项目、企业和科研院所牵头,出台相应的行业和材料标准,使海洋平台用先进特殊钢材料的产学研各个环节更加规范化和法制化。


  如果说我国海洋平台用结构钢如中厚板等材料与国外设计生产水平差距较大,那么我国海洋平台用特殊钢材料的研制与国外相比几乎为零。无论是上游特殊钢材料开发及中游的关键典型件生产,还是下游海洋平台项目的应用,都存在规划性、模式性的发展问题。材料开发应当由高端牌号国产化开始,逐步向自主设计成分体系、加工工艺规范发展;典型件生产应当紧密结合材料研发趋势,通过合理的、前瞻性的结构设计和材料使用达到提高产品服役性能、拔高产品附加值和科技含量的目的;而作为最终用户的平台项目部门,更是应当积极大胆通过试验井、试验平台等方式主动提出对国产化材料的性能要求,摒弃“依赖进口,降低风险,减轻责任”的错误理念,逐步使用国产典型件并在此基础上取代进口产品,这才是我国海洋平台用特殊钢材料健康、良性发展的正确方向。

 

 

更多关于材料方面、材料腐蚀控制、材料科普等方面的国内外最新动态,我们网站会不断更新。希望大家一直关注国家材料腐蚀与防护科学数据中心http://www.ecorr.org

 

 

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

相关文章
无相关信息

关于国家科技资源服务平台

国家科技基础条件平台中心是科技部直属事业单位,致力于推动科技资源优化配置,实现开放共享,其主要职责是:承担国家科技基础条件平台建设项目的过程管理和基础性工作;承担国家科技基础条件平台建设发展战略、规范标准、管理方式、运行状况和问题的研究,以及国际合作与宣传、培训等工作;承担科技基础条件门户系统的建设与运行管理工作;参与对在建和已建国家科技基础条件平台项目的考核评估和运行监督工作。

国家科技资源服务平台相关网站


国家材料腐蚀与防护科学数据中心

国家高能物理科学数据中心

国家基因组科学数据中心

国家微生物科学数据中心

国家空间科学数据中心

国家天文科学数据中心

国家对地观测科学数据中心

国家极地科学数据中心

国家青藏高原科学数据中心

国家生态科学数据中心

国家冰川冻土沙漠科学数据中心

国家计量科学数据中心

国家地球系统科学数据中心

国家人口健康科学数据中心

国家基础学科公共科学数据中心

国家农业科学数据中心

国家林业和草原科学数据中心

国家气象科学数据中心

国家地震科学数据中心

国家海洋科学数据中心